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Figure 1: E-commerce images synthesized by our fine-tuned DEPO model based on provided foregrounds.

Abstract
Generating high-quality, user-preferred backgrounds for e-commerce
product images poses unique challenges for diffusion models, par-
ticularly in aligning outputs with human visual preferences. While
Direct Preference Optimization (DPO) has shown promise in align-
ing generative models with human feedback, its application to diffu-
sion models faces key limitations, including the trade-off between
reward sparsity and supervision quality, mode collapse, and train-
ing instability. To tackle these issues, we propose Direct Expected
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Preference Optimization (DEPO), a novel framework that adapts
DPO to diffusion models through redesigned training and sampling
strategies. Specifically, DEPO introduces a DEPO loss combined
with trajectory segmentation to enable more frequent and infor-
mative reward feedback, employs Langevin MCMC to broaden the
exploration space and mitigate mode collapse, and leverages masks
to effectively constrain the search space while incorporating tar-
geted engineering designs to improve training stability. By directly
linking image-domain evaluations to expected log probabilities and
incorporating adversarial training, DEPO achieves better alignment
with user preferences while maintaining high image fidelity. Exper-
imental results demonstrate that DEPO surpasses existing methods
in both the diversity and quality of background generation.
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1 Introduction
Although diffusion models have demonstrated their strong capa-
bility to generate product images in e-commerce scenarios [6, 33],
aligning the generated images with human visual preferences re-
mains a significant challenge. This alignment is crucial for enhanc-
ing user satisfaction, improving engagement, and driving commer-
cial success. Recent studies, such as direct preference optimization
(DPO) [25], have shown considerable promise for aligning gener-
ative models with human preferences across both text and image
domains by leveraging direct supervision from comparative human
feedback. However, existing DPO-based approaches [15, 32, 37, 38]
face several limitations when applied to diffusion models. A key
challenge is the inherent trade-off between reward sparsity and
supervision quality: high-quality reward signals, typically provided
at the image level, are inherently sparse, while denser rewards tend
to be heuristic and lack deep alignment with the diffusion process.
This tension limits the ability to provide consistent and effective
guidance throughout the generation pipeline. Additionally, these
methods often suffer from reduced output diversity and unstable
training dynamics, both of which impede the development of robust
and preference-aligned image generation systems.

To address these challenges, we introduce DEPO (Direct Ex-
pected Preference Optimization), an innovative framework that
combines DPO strategies with diffusion models, specifically op-
timized for e-commerce product background generation. Our ap-
proach designs new training and sampling processes to overcome
the limitations of conventional DPO and diffusion models. By incor-
porating trajectory segmentation and DEPO loss, DEPO facilitates
more frequent and efficient reward feedback, enhancing the sam-
pling process and promoting a smoother learning curve. We further
integrate Langevin MCMC [21] to broaden the exploration space
and mitigate mode collapse. To ensure training stability, we de-
sign targeted exploration restrictions for backgrounds, directly link
evaluations in the image domain to expected log probabilities, and
implement a policy gradient selection mechanism. Additionally, we
apply adversarial training to reinforce theoretical and empirical sta-
bility improvements, ensuring consistent and high-quality training
outcomes. Our main contributions are as follows:
1) We are the first to demonstrate that image-domain evalua-
tions can be effectively connected to expected log probabili-
ties within the DPO framework, introducing a novel and stable
human preference fine-tuning approach for diffusion models. This
key insight enables consistent optimization that not only adheres
to the DPO training paradigm but also achieves a more precise
alignment between user preferences and reward signals.
2) We are the first to integrate advanced exploration tech-
niques, such as Langevin MCMC [21], into diffusion-based

policy search. This integration substantially expands the explo-
ration space and mitigates mode collapse, leading to more diverse
and robust image generation.
3) We propose a targeted strategy for e-commerce product
background generation by leveraging masks to effectively
constrain the search space of DEPO. This focused approach
improves training efficiency and enables the model to achieve state-
of-the-art performance, demonstrating its practical effectiveness in
real-world applications.

Extensive experiments validate that DEPO enhances training sta-
bility, increases image diversity, and surpasses existing methods in
generating high-quality product backgrounds. These advancements
set a new benchmark for the automated generation of e-commerce
visual content.

2 Preliminary
2.1 General RL Formulation of Diffusion

Models
Following prior work, we can represent the generation process of
a diffusion model as a Markov Decision Process (MDP). Consider
a sequence of distributions 𝑝 (x𝑡 ) with increasing noise levels, for
𝑡 ∈ [0, 1, 2, . . . ,𝑇 ] . Here, x0 represents the image distribution, while
x𝑇 is a pure Gaussian distribution. The process of image generation
can then be formulated as an MDP defined as follows:

s𝑡 ≜ (c, 𝑡, x𝑡 ) ,
𝜋𝜃 (a𝑡 | s𝑡 ) ≜ 𝑝𝜃 (x𝑡−1 | x𝑡 , c) ,

𝑃 (s𝑡+1 | s𝑡 , a𝑡 ) ≜
(
𝛿c, 𝛿𝑡−1, 𝛿x𝑡−1

)
,

a𝑡 ≜ x𝑡−1,
𝜌0 (s0) ≜ (𝑝 (c), 𝛿𝑇 ,N(0, I)) ,

𝑅 (s𝑡 , a𝑡 ) ≜
{
𝑟𝜙 (x0, c) if 𝑡 = 0,
0 otherwise,

(1)

where

• s𝑡 denotes the state at time step 𝑡 , incorporating the control condi-
tion c, the timestep 𝑡 , and the latent variable x𝑡 . In our application
for product background generation, c typically comprises the
text prompt ctxt and product image cimg with the corresponding
product mask cmask.

• The policy 𝜋𝜃 is parameterized as a diagonal Gaussian policy.
The mean is determined by the diffusion model, while the stan-
dard deviation is set according to the parameters of the diffusion
process, 𝜃 represents the parameters of the diffusion models.

• The state transition function 𝑃 (s𝑡+1 | s𝑡 , a𝑡 ) is deterministic,
dependent solely on the action a𝑡 .

• 𝜌0 (s0) denotes the distribution of initial states.
• 𝑅(s𝑡 , a𝑡 ) defines the reward function, which assigns a reward
𝑟𝜙 (x0, c) when 𝑡 = 0 and 0 at other times. In our case,𝜙 represents
the parameters of a judging function that scores images.
This MDP framework conceptualizes the image generation pro-

cess as a sequence of transitions, each driven by a Gaussian policy
through targeted action selection to generate meaningful outputs
at every stage. By organizing the process in this manner, it fa-
cilitates the formulation of the reward function 𝑟𝜙 (x0, c) and the
construction of positive and negative samples, thereby enabling
the application of various reinforcement learning (RL) algorithms.
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Figure 2: Overview of our DEPO.

A particularly effective technique for refining diffusion models is
Direct Preference Optimization (DPO). This approach utilizes user
preferences or predefined criteria to directly influence the policy,
effectively tuning the model to produce outcomes that are closely
aligned with the desired results.

2.2 DPO Formulation of Diffusion Models
With ahead MDP formulation of the generation process of diffusion
models, We can directly borrow the DPO formulation from Natural
Language Processing. From the same x𝑇 , we follow theMDP process
to generate two images, x+0 and x−0 , with the preference of the first
one. After collection of a lot of such image pairs, we can train the
diffusion model with the following loss:

LDPO (𝜋𝜃 ;𝜋ref ) = −E(x𝑇 ,x+0 ,x−0 )∼D
log𝜎

©­­
«
𝛽 log

𝜋𝜃

(
x+0 | x𝑇

)
𝜋ref

(
x+0 | x𝑇

) − 𝛽 log
𝜋𝜃

(
x−0 | x𝑇

)
𝜋ref

(
x−0 | x𝑇

) ª®®
¬

,

(2)

where 𝜋 (x0 |x𝑇 ) =
∏1

𝑡=𝑇 𝜋 (x𝑡−1 |x𝑡 ). Substitute the formula of 𝜋 in
Equation 2, we have that

LDPO (𝜋𝜃 ;𝜋ref ) = −E(x𝑇 ,x+0 ,x−0 )∼D log𝜎

𝑇∑︁
𝑖=1

©­­
«
𝛽 log

𝑝𝜃
(
x+𝑡−1 | x+𝑡

)
𝑝ref

(
x+𝑡−1 | x+𝑡

) − 𝛽 log
𝑝𝜃

(
x−𝑡−1 | x−𝑡

)
𝑝ref

(
x−𝑡−1 | x−𝑡

) ª®®
¬

,

(3)

where {x+𝑖 } and {x−𝑖 } are positive and negative trajectories. and
𝑝 (· | ·) indicades diagonal Gaussian policy defined by DDPM. What
we want is such a formulation:

− E(x𝑇 ,x+0 ,x−0 )∼D
𝑇∑︁
𝑖=1

log𝜎

©­­«
𝛽 log

𝑝𝜃
(
x+𝑡−1 | x+𝑡

)
𝑝ref

(
x+𝑡−1 | x+𝑡

) − 𝛽 log
𝑝𝜃

(
x−𝑡−1 | x−𝑡

)
𝑝ref

(
x−𝑡−1 | x−𝑡
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.

(4)

However, the sum formulation inside log𝜎 cannot be easily sepa-
rated. The main challenge is to ensure that the expanded expression
within log𝜎 can be decomposed, allowing for the calculation of the
loss without the need to store all gradients at each diffusion step.
Recent works [32, 37] introduce specific assumptions to argue that
it is possible to forcefully decompose the terms in Equation (3) into
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Figure 2: Overview of our DEPO.

Language Processing. From the same x𝑇 , we follow theMDP process
to generate two images, x+0 and x−0 , with the preference of the first
one. After collection of a lot of such image pairs, we can train the
diffusion model with the following loss:

LDPO (𝜋𝜃 ;𝜋ref ) = −E(x𝑇 ,x+0 ,x−0 )∼D
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where 𝜋 (x0 |x𝑇 ) =
∏1

𝑡=𝑇 𝜋 (x𝑡−1 |x𝑡 ). Substitute the formula of 𝜋 in
Equation 2, we have that
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where {x+𝑖 } and {x−𝑖 } are positive and negative trajectories. and
𝑝 (· | ·) indicades diagonal Gaussian policy defined by DDPM. What
we want is such a formulation:

− E(x𝑇 ,x+0 ,x−0 )∼D
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(4)

However, the sum formulation inside log𝜎 cannot be easily sepa-
rated. The main challenge is to ensure that the expanded expression
within log𝜎 can be decomposed, allowing for the calculation of the
loss without the need to store all gradients at each diffusion step.
Recent works [31, 35] introduce specific assumptions to argue that
it is possible to forcefully decompose the terms in Equation (3) into
step pairs as in Equation (4), resulting in the difference between x+𝑡
and x−𝑡 and a decrease in optimization efficiency. An alternative
strategy involves decomposing long trajectories into shorter seg-
ments and utilizing trajectory pairs of reduced length. SPO [14] has
presented an initial empirical exploration.

3 Methodology Overview
Our methodology follows the fundamental paradigm of online RL
algorithms, which consists of an iterative loop: sampling by the

• • • • x0+

x𝑇 • • • • x0−

• • • x+0

x𝑇 • • • • x−0
𝜏−1 𝜏−2 𝜏+3 𝜏−4

𝜏+1 𝜏+2 𝜏−3 𝜏+4

𝜏−

𝜏+

Figure 3: Our approach will yield much more frequent re-
turns compared to the original diffusion trajectory.

current model, followed by model optimization. The overview of
our DEPO is shown in Figure 2.

During the sampling stage, we follow SPO and employ a similar
sampling procedure to generate shorter trajectories, as illustrated
in Figure 3. However, unlike conventional approaches, we incorpo-
rate Langevin MCMC at branching timesteps, enhancing sampling
flexibility beyond that of DDPM.

During the training stage, unlike other methods, we do not de-
compose each short trajectory into step pairs containing different
states, as this would apply Equation (4) as Equation (3). Instead, we
directly employ a new, stable DEPO loss and reformulate it into an
easy-to-apply expression tailored for diffusion models, requiring
only a reward model in the image domain.

Additionally, we incorporate several engineering techniques
to enhance performance, including constrained exploration for
background consistency, a policy gradient selection mechanism,
and adversarial training strategies.

Table 1: Comparison of Different Methods Based on Key Fea-
tures. The table illustrates the presence (✓) or absence (✗)
of specific features across various algorithms, such as dis-
cretization error, exact evaluation, extra exploration, shared
state utilization, and high-frequency reward application. A
detailed explanation is in Appendix A.

Method No Discretization
Error

Exact
Evaluation

Extra
Exploration

Shared
State

High Frequency
Reward

Diffusion-DPO [30] ✓ ✓ ✗ ✗ ✓

D3PO [34] ✗ ✓ ✗ ✗ ✗

SPO [14] ✗ ✗ ✗ Partially ✓

DEPO (Ours) ✗ ✓ ✓ ✓ ✓

4 Efficient Short Trajectory Sampling
There are two main challenges in the current sampling procedure.
Firstly, the reward is too sparse: in practice, we can only evaluate
the quality of an image in the x0 domain, which means generating
the entire sequence is necessary to obtain a single reward at x0.
Secondly, there are potential mode collapse issues: during train-
ing, the joint probability distribution between x𝑡 and x𝑡−1 becomes
increasingly similar across different timesteps, which can lead to
mode collapse.

3

Figure 3: Our approach will yield much more frequent re-
turns compared to the original diffusion trajectory.

step pairs as in Equation (4), resulting in the difference between x+𝑡
and x−𝑡 and a decrease in optimization efficiency. An alternative
strategy involves decomposing long trajectories into shorter seg-
ments and utilizing trajectory pairs of reduced length. SPO [15] has
presented an initial empirical exploration.

3 Methodology Overview
Our methodology follows the fundamental paradigm of online RL
algorithms, which consists of an iterative loop: sampling by the
current model, followed by model optimization. The overview of
our DEPO is shown in Figure 2.

During the sampling stage, we follow SPO and employ a similar
sampling procedure to generate shorter trajectories, as illustrated
in Figure 3. However, unlike conventional approaches, we incorpo-
rate Langevin MCMC at branching timesteps, enhancing sampling
flexibility beyond that of DDPM.

During the training stage, unlike other methods, we do not de-
compose each short trajectory into step pairs containing different
states, as this would apply Equation (4) as Equation (3). Instead, we
directly employ a new, stable DEPO loss and reformulate it into an
easy-to-apply expression tailored for diffusion models, requiring
only a reward model in the image domain.

Additionally, we incorporate several engineering techniques
to enhance performance, including constrained exploration for
background consistency, a policy gradient selection mechanism,
and adversarial training strategies.

Table 1: Comparison of Different Methods Based on Key Fea-
tures. The table illustrates the presence (✓) or absence (✗)
of specific features across various algorithms, such as dis-
cretization error, exact evaluation, extra exploration, shared
state utilization, and high-frequency reward application. A
detailed explanation is in Appendix A.

Method No Discretization
Error

Exact
Evaluation

Extra
Exploration

Shared
State

High Frequency
Reward

Diffusion-DPO [31] ✓ ✓ ✗ ✗ ✓

D3PO [36] ✗ ✓ ✗ ✗ ✗

SPO [15] ✗ ✗ ✗ Partially ✓

DEPO (Ours) ✗ ✓ ✓ ✓ ✓
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Figure 4: A pair of trajectories 𝜏+, 𝜏− from the diffusion pro-
cess. In this type of sampling algorithm, the reward is inher-
ently sparse, as it is only obtained every T steps.

Segmentation of Original Trajectories. One simple approach
to addressing the sparse reward problem is to shorten the trajec-
tory of the RL sampling process. Directly increasing the step size,
however, can compromise the generation quality of the diffusion
model. Due to the inherent structure of diffusion models, policies
for different timesteps are often trained independently using
score matching or flowmatching algorithms. This implies that
the policy does not rely heavily on dependencies between different
timesteps.

To leverage this property, as shown in Figure 3,we can strategi-
cally introduce branching at specific timesteps during image
generation, segmenting the entire trajectory into multiple
shorter sub-trajectories for training without any systematic
errors. This method enhances the efficiency of the training process
and helps mitigate the sparse reward issue. To support this, we
train a reward model to assess the quality of the final state of each
short trajectory. However, this approach may introduce additional
variance, making it necessary to implement a selection mechanism
to filter and retain the most promising trajectories, which will be
introduced in Section 6.

The comparison between whole trajectories and short trajecto-
ries is illustrated in Figure 4 and Figure 5. For the former, the reward
is inherently sparse as it is only obtained every 𝑇 steps. To make
the loss function feasible, we need to better accommodate the error
introduced in Equation (4). For the latter, we select an appropriate
𝑛 and directly utilize the pair {x+𝑡−𝑛, x−𝑡−𝑛 |x𝑡 }, focusing solely on
this pair. In this way, we avoid the systematic error introduced by
the interchange between log𝜎 and

∑
, and the discretization error

of the SDE can be further mitigated through the application of
Langevin MCMC, which will be introduced as follows.
Expanding Exploration with Langevin MCMC. An additional
enhancement in our sampling process is the integration of Langevin
MCMC [20]. After performing the initial state transition from x𝑡 to
x𝑡−1 using the DDPM sampling algorithm (as depicted in blue in Fig-
ure 5), where x𝑡−1 ∼ 𝑝𝜃 (x𝑡−1 |x𝑡 ) may become increasingly similar
across different timesteps thus inducing mode collapse, an explo-
ration step is necessary. To address this, we introduce Langevin
MCMC sampling at these timesteps as an exploration mechanism.
This approach effectively explores regions within 𝑝𝜃 (x𝑡−1) and
the vicinity of 𝑝𝜃 (x𝑡−1 |x𝑡 ), which, in our evaluation, provides a
robust means of enhancing model diversity and alleviating mode
collapse. We provide detailed information about Langevin MCMC
in Appendix C.

x+𝑡−1 x+𝑡−2 · · · x+𝑡−𝑛

x𝑡 𝑅(𝜏+𝑖 ) > 𝑅(𝜏−𝑖 )

x−𝑡−1 x−𝑡−2 · · · x−𝑡−𝑛

a+𝑡−1 a+𝑡−2 a+𝑡−𝑛+1

a+𝑡

a−𝑡

a−𝑡−2 a−𝑡−𝑛+1a−𝑡−1

0
0

𝑟 (x−𝑡−𝑛 )

0
𝑟 (x+𝑡−𝑛 )

0

0

0

Figure 5: A pair of short trajectories, 𝜏+𝑖 , 𝜏
−
𝑖 , fromour diffusion

process. In this sampling algorithm, the reward is frequent,
being obtained every n steps.

5 Direct Expected Preference Optimization
Given that human preferences are inherently tied to the image
domain, there is a lack of corresponding data in the domain of x𝑡
for 𝑡 ≠ 0. However, diffusion models provide predictive estimates
of x0 at each timestep, and these predictions remain reasonably
accurate even at relatively small timesteps. This enables the direct
application of preference models designed for the image domain.
Based on this observation, we make Assumption 5.1.

Assumption 5.1. The reward model in the image domain serves as
a reliable rewardmodel for the diffusionmodel’s one-step prediction
from a relatively small timestep.

Building on Assumption 5.1, we reconsider the scores for x𝑡−𝑛
typically used by other methods, which are obtained from the dif-
fusion model’s direct prediction of x̂0, and subsequently evaluated
in the x0 domain. Under Proposition 5.2, we have Lemma 5.3.

Proposition 5.2. According to DDIM [28],
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only on 𝑡 −𝑛 and can represent the evolution of x𝑡−𝑛−1, 𝜖

(𝑡−𝑛)
𝜃

is the
predicting noise function.

Lemma5.3 (Accurate Evaluation for DiffusionModels). The reward
model applied to the diffusion model’s one-step prediction, x̂0, aligns
more closely with E

[
x𝑡−𝑛−1

��x𝑡−𝑛 ] than with samples from x𝑡−𝑛−1 ∼
𝑝𝜃 (x𝑡−𝑛−1 |x𝑡−𝑛), and more so than using x𝑡−𝑛 alone.

Following Lemma 5.3, we propose replacing 𝑝 (x𝑡𝜏−𝑛 |x𝑡𝜏 ) with
𝑝 (x𝑡𝜏−𝑛−1 |x𝑡𝜏 ) and introducing an expectation over x𝑡𝜏−𝑛−1to bet-
ter align with the distribution level evaluation. Based on this, we
define the DEPO Loss:

LDEPO = −E𝜏∼D log𝜎Ex±𝑡𝜏 −𝑛−1∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏 −𝑛−1 |x±𝑡𝜏 −𝑛 )

©­­«
𝛽 log

𝑝m
𝜃

(
x+𝑡𝜏−𝑛−1 | x𝑡𝜏

)
𝑝ref

(
x+𝑡𝜏−𝑛−1 | x𝑡𝜏

) − 𝛽 log
𝑝m
𝜃

(
x−𝑡𝜏−𝑛−1 | x𝑡𝜏

)
𝑝ref

(
x−𝑡𝜏−𝑛−1 | x𝑡𝜏

) ª®®¬
,

(5)

where 𝑝m
𝜃

denotes that the mean 𝜇 of the Gaussian policy is de-
tached within the mask m, which will be introduced later, and 𝑠𝑔
represents the stop-gradient operation. However, due to the expec-
tation inside log𝜎 , we still encounter the computational efficiency
issue discussed in the Preliminary section. To address this, we fur-
ther derive an efficient formula for DEPO that directly computes
the term inside log𝜎 in the DEPO loss, as stated in Proposition 5.4.

4

Figure 4: A pair of trajectories 𝜏+, 𝜏− from the diffusion pro-
cess. In this type of sampling algorithm, the reward is inher-
ently sparse, as it is only obtained every T steps.

4 Efficient Short Trajectory Sampling
There are two main challenges in the current sampling procedure.
Firstly, the reward is too sparse: in practice, we can only evaluate
the quality of an image in the x0 domain, which means generating
the entire sequence is necessary to obtain a single reward at x0.
Secondly, there are potential mode collapse issues: during train-
ing, the joint probability distribution between x𝑡 and x𝑡−1 becomes
increasingly similar across different timesteps, which can lead to
mode collapse.
Segmentation of Original Trajectories. One simple approach
to addressing the sparse reward problem is to shorten the trajec-
tory of the RL sampling process. Directly increasing the step size,
however, can compromise the generation quality of the diffusion
model. Due to the inherent structure of diffusion models, policies
for different timesteps are often trained independently using
score matching or flowmatching algorithms. This implies that
the policy does not rely heavily on dependencies between different
timesteps.

To leverage this property, as shown in Figure 3,we can strategi-
cally introduce branching at specific timesteps during image
generation, segmenting the entire trajectory into multiple
shorter sub-trajectories for training without any systematic
errors. This method enhances the efficiency of the training process
and helps mitigate the sparse reward issue. To support this, we
train a reward model to assess the quality of the final state of each
short trajectory. However, this approach may introduce additional
variance, making it necessary to implement a selection mechanism
to filter and retain the most promising trajectories, which will be
introduced in Section 6.

The comparison between whole trajectories and short trajecto-
ries is illustrated in Figure 4 and Figure 5. For the former, the reward
is inherently sparse as it is only obtained every 𝑇 steps. To make
the loss function feasible, we need to better accommodate the error
introduced in Equation (4). For the latter, we select an appropriate
𝑛 and directly utilize the pair {x+𝑡−𝑛, x−𝑡−𝑛 |x𝑡 }, focusing solely on
this pair. In this way, we avoid the systematic error introduced by
the interchange between log𝜎 and

∑
, and the discretization error

of the SDE can be further mitigated through the application of
Langevin MCMC, which will be introduced as follows.
Expanding Exploration with Langevin MCMC. An additional
enhancement in our sampling process is the integration of Langevin
MCMC [21]. After performing the initial state transition from x𝑡 to
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Figure 4: A pair of trajectories 𝜏+, 𝜏− from the diffusion pro-
cess. In this type of sampling algorithm, the reward is inher-
ently sparse, as it is only obtained every T steps.

Segmentation of Original Trajectories. One simple approach
to addressing the sparse reward problem is to shorten the trajec-
tory of the RL sampling process. Directly increasing the step size,
however, can compromise the generation quality of the diffusion
model. Due to the inherent structure of diffusion models, policies
for different timesteps are often trained independently using
score matching or flowmatching algorithms. This implies that
the policy does not rely heavily on dependencies between different
timesteps.

To leverage this property, as shown in Figure 3,we can strategi-
cally introduce branching at specific timesteps during image
generation, segmenting the entire trajectory into multiple
shorter sub-trajectories for training without any systematic
errors. This method enhances the efficiency of the training process
and helps mitigate the sparse reward issue. To support this, we
train a reward model to assess the quality of the final state of each
short trajectory. However, this approach may introduce additional
variance, making it necessary to implement a selection mechanism
to filter and retain the most promising trajectories, which will be
introduced in Section 6.

The comparison between whole trajectories and short trajecto-
ries is illustrated in Figure 4 and Figure 5. For the former, the reward
is inherently sparse as it is only obtained every 𝑇 steps. To make
the loss function feasible, we need to better accommodate the error
introduced in Equation (4). For the latter, we select an appropriate
𝑛 and directly utilize the pair {x+𝑡−𝑛, x−𝑡−𝑛 |x𝑡 }, focusing solely on
this pair. In this way, we avoid the systematic error introduced by
the interchange between log𝜎 and

∑
, and the discretization error

of the SDE can be further mitigated through the application of
Langevin MCMC, which will be introduced as follows.
Expanding Exploration with Langevin MCMC. An additional
enhancement in our sampling process is the integration of Langevin
MCMC [20]. After performing the initial state transition from x𝑡 to
x𝑡−1 using the DDPM sampling algorithm (as depicted in blue in Fig-
ure 5), where x𝑡−1 ∼ 𝑝𝜃 (x𝑡−1 |x𝑡 ) may become increasingly similar
across different timesteps thus inducing mode collapse, an explo-
ration step is necessary. To address this, we introduce Langevin
MCMC sampling at these timesteps as an exploration mechanism.
This approach effectively explores regions within 𝑝𝜃 (x𝑡−1) and
the vicinity of 𝑝𝜃 (x𝑡−1 |x𝑡 ), which, in our evaluation, provides a
robust means of enhancing model diversity and alleviating mode
collapse. We provide detailed information about Langevin MCMC
in Appendix C.
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Figure 5: A pair of short trajectories, 𝜏+𝑖 , 𝜏
−
𝑖 , fromour diffusion

process. In this sampling algorithm, the reward is frequent,
being obtained every n steps.

5 Direct Expected Preference Optimization
Given that human preferences are inherently tied to the image
domain, there is a lack of corresponding data in the domain of x𝑡
for 𝑡 ≠ 0. However, diffusion models provide predictive estimates
of x0 at each timestep, and these predictions remain reasonably
accurate even at relatively small timesteps. This enables the direct
application of preference models designed for the image domain.
Based on this observation, we make Assumption 5.1.

Assumption 5.1. The reward model in the image domain serves as
a reliable rewardmodel for the diffusionmodel’s one-step prediction
from a relatively small timestep.

Building on Assumption 5.1, we reconsider the scores for x𝑡−𝑛
typically used by other methods, which are obtained from the dif-
fusion model’s direct prediction of x̂0, and subsequently evaluated
in the x0 domain. Under Proposition 5.2, we have Lemma 5.3.

Proposition 5.2. According to DDIM [28],
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(x𝑡−𝑛)
where 𝛼 (𝑡 − 𝑛) and 𝛽 (𝑡 − 𝑛) are deterministic scalars that depend
only on 𝑡 −𝑛 and can represent the evolution of x𝑡−𝑛−1, 𝜖

(𝑡−𝑛)
𝜃

is the
predicting noise function.

Lemma5.3 (Accurate Evaluation for DiffusionModels). The reward
model applied to the diffusion model’s one-step prediction, x̂0, aligns
more closely with E

[
x𝑡−𝑛−1

��x𝑡−𝑛 ] than with samples from x𝑡−𝑛−1 ∼
𝑝𝜃 (x𝑡−𝑛−1 |x𝑡−𝑛), and more so than using x𝑡−𝑛 alone.

Following Lemma 5.3, we propose replacing 𝑝 (x𝑡𝜏−𝑛 |x𝑡𝜏 ) with
𝑝 (x𝑡𝜏−𝑛−1 |x𝑡𝜏 ) and introducing an expectation over x𝑡𝜏−𝑛−1to bet-
ter align with the distribution level evaluation. Based on this, we
define the DEPO Loss:

LDEPO = −E𝜏∼D log𝜎Ex±𝑡𝜏 −𝑛−1∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏 −𝑛−1 |x±𝑡𝜏 −𝑛 )
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(5)

where 𝑝m
𝜃

denotes that the mean 𝜇 of the Gaussian policy is de-
tached within the mask m, which will be introduced later, and 𝑠𝑔
represents the stop-gradient operation. However, due to the expec-
tation inside log𝜎 , we still encounter the computational efficiency
issue discussed in the Preliminary section. To address this, we fur-
ther derive an efficient formula for DEPO that directly computes
the term inside log𝜎 in the DEPO loss, as stated in Proposition 5.4.
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process. In this sampling algorithm, the reward is frequent,
being obtained every n steps.

x𝑡−1 using the DDPM sampling algorithm (as depicted in blue in Fig-
ure 5), where x𝑡−1 ∼ 𝑝𝜃 (x𝑡−1 |x𝑡 ) may become increasingly similar
across different timesteps thus inducing mode collapse, an explo-
ration step is necessary. To address this, we introduce Langevin
MCMC sampling at these timesteps as an exploration mechanism.
This approach effectively explores regions within 𝑝𝜃 (x𝑡−1) and
the vicinity of 𝑝𝜃 (x𝑡−1 |x𝑡 ), which, in our evaluation, provides a
robust means of enhancing model diversity and alleviating mode
collapse. We provide detailed information about Langevin MCMC
in Appendix C.

5 Direct Expected Preference Optimization
Given that human preferences are inherently tied to the image
domain, there is a lack of corresponding data in the domain of x𝑡
for 𝑡 ≠ 0. However, diffusion models provide predictive estimates
of x0 at each timestep, and these predictions remain reasonably
accurate even at relatively small timesteps. This enables the direct
application of preference models designed for the image domain.
Based on this observation, we make Assumption 5.1.

Assumption 5.1. The reward model in the image domain serves as
a reliable rewardmodel for the diffusionmodel’s one-step prediction
from a relatively small timestep.

Building on Assumption 5.1, we reconsider the scores for x𝑡−𝑛
typically used by other methods, which are obtained from the dif-
fusion model’s direct prediction of x̂0, and subsequently evaluated
in the x0 domain. Under Proposition 5.2, we have Lemma 5.3.

Proposition 5.2. According to DDIM [29],
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where 𝛼 (𝑡 − 𝑛) and 𝛽 (𝑡 − 𝑛) are deterministic scalars that depend
only on 𝑡 −𝑛 and can represent the evolution of x𝑡−𝑛−1, 𝜖

(𝑡−𝑛)
𝜃

is the
predicting noise function.

Lemma5.3 (Accurate Evaluation for DiffusionModels). The reward
model applied to the diffusion model’s one-step prediction, x̂0, aligns
more closely with E

[
x𝑡−𝑛−1

��x𝑡−𝑛 ] than with samples from x𝑡−𝑛−1 ∼
𝑝𝜃 (x𝑡−𝑛−1 |x𝑡−𝑛), and more so than using x𝑡−𝑛 alone.

Following Lemma 5.3, we propose replacing 𝑝 (x𝑡𝜏−𝑛 |x𝑡𝜏 ) with
𝑝 (x𝑡𝜏−𝑛−1 |x𝑡𝜏 ) and introducing an expectation over x𝑡𝜏−𝑛−1to bet-
ter align with the distribution level evaluation. Based on this, we
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define the DEPO Loss:
LDEPO = −E𝜏∼D log𝜎Ex±𝑡𝜏 −𝑛−1∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏 −𝑛−1 |x±𝑡𝜏 −𝑛 )
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where 𝑝m
𝜃

denotes that the mean 𝜇 of the Gaussian policy is de-
tached within the mask m, which will be introduced later, and 𝑠𝑔
represents the stop-gradient operation. However, due to the expec-
tation inside log𝜎 , we still encounter the computational efficiency
issue discussed in the Preliminary section. To address this, we fur-
ther derive an efficient formula for DEPO that directly computes
the term inside log𝜎 in the DEPO loss, as stated in Proposition 5.4.

Proposition 5.4 (Efficient Formula for DEPO). We can directly
obtain the expected log probability within the log𝜎 by
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The proof of Proposition 5.4 is in Appendix D.1. In this way, we can
calculate the DEPO loss more efficiently as shown in Equation (15).

6 Techniques for Stabilizing Training
Constrained Exploration for Backgrounds. As illustrated in
Figure 2, our fine-tuning task focuses on generating the background.
Consequently, gradients passing through the product area do not
contribute meaningful information and may introduce instability
during training. To address this, we enforce gradient backpropa-
gation exclusively through the background region, ensuring that
the fine-tuning process concentrates on the relevant areas. For con-
straints within the product area, we adopt a direct approach by
mimicking the original reference model’s behavior and applying
direct restrictions within that region. We have the following simple
Loss:

L𝑟𝑒𝑔 = E
[
(a𝑡 − a𝑟𝑒 𝑓𝑡 ) ·m

]2
, (7)

where m is the mask of the product. This method helps maintain
the integrity of the product area while enabling efficient and stable
training of the background generation.
Policy Gradient Selection Mechanism. Despite reductions in
variance, issues with training stability continue to pose challenges.
To address these, we have implemented a Policy Gradient Selection
Mechanism aimed at maximizing training efficiency and stability
by refining the selection and utilization of pivotal samples. This
mechanism comprises two primary components:
a) Sample Selection: Our selection process differs from SPO by
utilizing a relative gap for filtering rather than an absolute gap.
This approach is first applied during trajectory bifurcation at the
same timestep and later revisited after sampling across different
timesteps to ensure sample quality.
b) Computing DEPO Loss: While calculating the DEPO loss,
we identify the sample points requiring optimization based on

Figure 6: The probability space of 𝑝+ = 𝑝𝜃 (x+𝑡−1 |x𝑡 ) and 𝑝− =
𝑝𝜃 (x−𝑡−1 |x𝑡 ). 𝑎 = max(𝑝+

𝑟𝑒 𝑓
, 𝑝−

𝑟𝑒 𝑓
) and 𝑏 = min(𝑝+

𝑟𝑒 𝑓
, 𝑝−

𝑟𝑒 𝑓
).

the probabilities predicted by the reference model. This method
enhances our focus on key samples poised to significantly boost
model performance without straying too far from the reference
model. As the probability space shown in Figure 6, we will detach
the gradient propagation under the following situations:

log𝑝−𝜃 ≤ 𝜆𝑑𝑒𝑡𝑎𝑐ℎ · log𝑏, 𝑑𝑒𝑡𝑎𝑐ℎ 𝑝−𝜃 ,

log 𝑝+𝜃 ≥ 1
𝜆𝑑𝑒𝑡𝑎𝑐ℎ

· log𝑎, 𝑑𝑒𝑡𝑎𝑐ℎ 𝑝+𝜃 .
(8)

The worst range lies in the blue area rather than the red area, be-
cause in this case, although LDEPO is decreasing, 𝑝+ also decreases
undesirably, being influenced by 𝑝− . A detailed explanation is in
Appendix B.
Adversarial Training. Preference optimization improves the aes-
thetics of generated images to better match user preferences. In
the e-commerce scene, it is essential for generated images to align
seamlessly with the style of manually crafted e-commerce images.
To achieve the goal, we employ adversarial loss to reduce the stylis-
tic differences between generated images and selected aesthetic
e-commerce images. Following [18], we combine the encoder and
mid-block of the pre-trained diffusion model with a trainable predic-
tion head as the discriminator 𝑑 . Based on Hinge loss function [16],
the optimization objective can be formulated as follows:

L𝑎𝑑𝑣 = − E𝜏∼D𝜏 ,𝑥𝑓 𝑎𝑘𝑒∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏−𝑛−1 |x+𝑡𝜏 −𝑛 )

𝑑
(
𝑥 𝑓 𝑎𝑘𝑒 , 𝑡𝜏−𝑛−1, c

)
.

(9)

In summary, our final loss function is defined as:
L = LDEPO + 𝑐𝑟𝑒𝑔L𝑟𝑒𝑔 + 𝑐𝑎𝑑𝑣L𝑎𝑑𝑣 . (10)

7 Dataset and Reward Model
Pairwise User Preference Dataset. Our online e-commerce im-
age background generation platform enables users to specify the
position and size of their products within an image and utilize cus-
tom prompts to simultaneously generate a group of images with
different backgrounds. Users can then select and download their
preferred images. To create the pairwise preference dataset D𝑝 , we
collect 1,122,624 images from the platform, and construct 884,649
samples for training and 1,123 samples for evaluation. Each sample



MM ’25, October 27–31, 2025, Dublin, Ireland Shikun Sun et al.

Base

a	rectangular	object
with	an	attached	tassel
featuring	intricate
knotwork	and	beads.	

The	background
consists	of	a	white	tile
wall	with	a	hexagonal
pattern	and	subtle

marbling.	

The	image	is	softly	lit
with	a	warm,	glowing
ambiance,	suggesting	a
serene	and	inviting
atmosphere.	

DPO SPO w/o	adv w/o	DEPO Ours

Figure 7: The visual comparisons between different methods. It is clear that the impact of DPO and SPO on image quality is
negligible compared to our DEPO in e-commerce image background generation. Without L𝑎𝑑𝑣 , the background style closely
resembles that of the base. Without L𝐷𝐸𝑃𝑂 , the background lacks aesthetic appeal and seems unnecessarily complicated. In
conclusion, L𝐷𝐸𝑃𝑂 primarily focused on optimizing the image aesthetic, whereas L𝑎𝑑𝑣 mainly concentrated on optimizing the
image style. Our DEPO framework produces the best visual outcomes.

in the dataset contains a text prompt ctxt and a pair of generated
images 𝑥+, 𝑥− , where image 𝑥+ is preferred over image 𝑥− .
E-commerce Preference Score.We develop a rewardmodel called
E-commerce Preference Score (EPS) to predict user preferences for
images generated by custom prompts. Following the architecture
of CLIP [12, 24], given a prompt ctxt and an image 𝑥 , our reward
model computes the preference score 𝑠 (ctxt, 𝑥) with text encoder
𝐸𝑡𝑥𝑡 and image encoder 𝐸𝑖𝑚𝑔 :

𝑠 (ctxt, 𝑥) = 𝐸𝑡𝑥𝑡 (ctxt) · 𝐸𝑖𝑚𝑔 (𝑥) ·𝑇, (11)
where 𝑇 is the learned scalar temperature parameter of CLIP. The
model is trained on the Pairwise User Preference Dataset, and the
loss function can be formulated as:

L𝑟𝑚 = −E(ctxt,𝑥+,𝑥− )∼D𝑝
[log𝜎 (𝑠 (ctxt, 𝑥+) − 𝑠 (ctxt, 𝑥−))] . (12)

We find that the resulting scoring function achieves 69.8% accuracy
rate on the evaluation dataset, which is close to the performance of
PickScore [12] on Pickaic dataset (70.5% accuracy rate).
Aesthetic E-commerce Dataset.We collect 2,456 well-designed
aesthetic images from an e-commerce platform, and obtain the
captions of the images using GPT-4o [20]. Each sample in the dataset
D𝑎 contains a control condition c and an aesthetic e-commerce
image 𝑥 . We randomly select 200 samples from the dataset for
evaluation, and use the remaining samples for training.
8 Experiments
8.1 Implementation Details
For our best-performing implementation, we use the following
configurations: LoRA with rank 64 for training, a learning rate

of 10−4, and a GAN-specific learning rate of 10−5. The sampling
process consists of 25 steps, with a short trajectory length of 4.
We apply a 50% filter rate between trajectories and a 50% filter
rate across different timesteps. Additional hyperparameters include
𝑐detach = 3.0, 𝑐reg = 10−4, and 𝑐adv = 0.1.

During the training of DEPO, we run 3,000 steps, saving the
LoRA parameters every 50 steps. The model is trained with an
effective batch size of 16 using eight H20 GPUs. While this batch
size is significantly smaller than that of Diffusion-DPO, it aligns
with recent works such as SPO, which have demonstrated strong
visual results. The optimal checkpoint is typically selected around
the 1,000-step mark within the 3,000 training steps.

8.2 Evaluation Metrics
E-commerce Preference Score (EPS). The primary quantitative
metric in our evaluation is the E-commerce Preference Score (EPS),
as our main objective is to align with preferences specific to our
commercial context.
General Quality Evaluation Metrics. In addition to EPS, we con-
sider two general evaluation metrics: PickScore and CLIP Score.
PickScore is trained on a different preference dataset with an em-
phasis on the main object, which may not fully align with our
specific context. CLIP Score measures the alignment between the
generated image and the text prompt but has only limited relevance
to our scenario.
Diversity Metrics. We quantify diversity using the trace of the
covariance of Inception-V3 [30] latent features, similar to FID [11].
This method aligns with the underlying assumption in FID, where
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Figure 8: Visualization of foreground images, images generated by baseline, and images generated by our DEPO.

the latent features are treated as samples from a multivariate Gauss-
ian distribution.

8.3 Comparision with Other Methods
Although directly applying Diffusion-DPO to our scenario is unsuc-
cessful, we successfully adapt it by incorporating simple gradient
clipping. Since the training code for the reference model of SPO has
not been released for now, we use their model solely for comparison
purposes. The visual results are presented in Figure 7. It is evident
that our DEPO framework produces the best visual outcomes.

We also conducted a user study in Figure 9 to compare our
method against three baselines: the original Baseline, Diffusion
DPO, and SPO. For each comparison, we collected 76 preference
pairs for each comparison.
8.4 Ablation Study
Langevin MCMC Exploration. The Langevin MCMC algorithm
introduces additional exploration, potentially leading to improved
performance. As shown in Table 2, Langevin MCMC contributes a
0.31 increase in EPS and a 0.26 increase in CLIP Score, demonstrat-
ing its effectiveness.
Online or Offline. Online training offers broader exploration but
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Figure 9: User preference for DEPO compared with other
methods. These results demonstrate that our approach is
more aligned with human preferences in visual quality and
overall presentation compared to existing methods.

comes with a higher likelihood of deviating from the original dis-
tribution. In our experiments, online training contributes only a
0.05 increase in EPS but shows a 0.35 improvement in CLIP Score.
This indicates that, for our specific task, expanding the exploration
space through online training has an overall positive impact. For
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Table 2: Quantitativemetrics (mean ± standard deviation) for EPS, PickScore, and CLIP Score acrossmore baselines and ablations.
We perform the generation process five times and report the mean and standard deviation of the results.

Method EPS↑ (Mean ± Std) PickScore↑ (Mean ± Std) CLIP↑ (Mean ± Std)
Baseline 17.31 ± 0.07 21.03 ± 0.03 26.63 ± 0.21
Diffusion-DPO 17.42 ± 0.04 21.07 ± 0.01 26.90 ± 0.12
SPO 17.59 ± 0.05 21.17 ± 0.03 27.19 ± 0.15
DEPO (Ours) 17.86 ± 0.06 21.24 ± 0.02 27.64 ± 0.11

w random filter 17.45 ± 0.10 21.01 ± 0.04 26.87 ± 0.19
w/o sg on product mask 17.78 ± 0.08 21.07 ± 0.01 25.92 ± 0.17
w/o 𝐿𝑟𝑒𝑔 & sg on product mask 17.59 ± 0.05 21.08 ± 0.02 26.89 ± 0.15
w/o 𝐿𝑎𝑑𝑣 17.81 ± 0.06 21.15 ± 0.03 26.90 ± 0.21
w/o detach on 𝑝± 17.73 ± 0.08 21.10 ± 0.03 26.74 ± 0.22
w/o Langevin MCMC 17.55 ± 0.07 21.16 ± 0.02 27.40 ± 0.14
w/o online sampling 17.81 ± 0.07 21.14 ± 0.04 27.29 ± 0.12
w/o DEPO Loss 16.99 ± 0.04 20.96 ± 0.01 26.69 ± 0.15

Table 3: Diversity Score across different methods. The results
align with our visual observations: DEPO achieves the high-
est Diversity Score among all methods.

Method Diversity Score↑
Baseline 174.6
Diffusion-DPO 177.5
SPO 176.5
DEPO (Ours) 183.8

models trained over the long term, offline training demonstrates
better stability.
Constrained Exploration. Although applying the stop-gradient
operation on the product mask resulted in a modest improvement
of 0.08 in EPS, when combined with L2 regularization, it collec-
tively contributes to a 0.27 increase in EPS. This indicates that such
a targeted design is highly effective for our task. Additionally, it
yields a significant 0.75 improvement in CLIP Score.
Policy Gradient Selection Mechanism.We primarily compare
the filtering rules applied at different timesteps. Compared to a
random filter, our high-score filter shows an improvement of 0.41
in EPS. This indicates that, within the range of timesteps, obtaining
higher-quality samples is more beneficial for performance than
obtaining uniformly distributed samples.
GAN Loss. Although the GAN loss provides only a minor im-
provement in EPS, it helps address certain problematic cases and
improve visual results as shown in Figure 7. Moreover, the GAN
loss significantly enhances the text alignment metric, yielding a
0.74 increase.
9 Related Work
Background Generation. Early methods generated backgrounds
by composing foreground and background images [17, 19], requir-
ing multiple steps such as image matching [39], foreground place-
ment [1], and harmonization [7, 8]. These methods depend on back-
ground libraries, limiting diversity. With advances in text-to-image
generation [22, 26], backgrounds can now be generated directly
from prompts. Subject-driven methods like DreamBooth [5, 14, 27]

improve harmony but struggle with subject fidelity. Inpainting-
based approaches [3, 9, 34] maintain the foreground but risk im-
proper subject extension or disharmony. For e-commerce images,
subject fidelity is critical. We build on inpainting techniques and
introduce preference optimization to enhance image quality.
Preference Optimization. Recent diffusion-based methods op-
timize image generation to better align with human preferences.
Chen et al. [4] refine diffusion models via PPO [28], while Align-
ingT2I [13] leverages a reward model to weight training data. Policy
gradient methods like DPOK [10] and DDPO [2] further improve
model alignment. ReFL [35] and AlignProp [23] propagate gradients
through differentiable reward models.

Inspired by the success of DPO [25] in LLMs, Diffusion-DPO [31]
trains on image preference pairs, while D3PO [36] incorporates
human-labeled preferences. SPO [15] enhances supervision with
step-aware preference models. However, directly applying these
methods to background generation often results in unstable training
and suboptimal quality. To address this, we introduce improved
sampling and training techniques for better performance.
10 Conclusion
We introduce DEPO, a novel framework tailored for generating
e-commerce product backgrounds by addressing the trade-off be-
tween reward sparsity and supervision quality. By incorporating
the DEPO loss, Langevin MCMC for expanded exploration, targeted
exploration constraints, and adversarial training, DEPO ensures
consistent, high-quality outputs aligned with human preferences.
Extensive experiments demonstrate that DEPO significantly en-
hances both the quality and diversity of visually appealing product
background generation, outperforming existing methods.
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A A Detailed Explanation for Table 1
The table compares different diffusion-based policy optimization methods across key aspects.

• No Discretization Error indicates whether the method avoids trajectory construction, which introduces discretization artifacts;
Diffusion-DPO achieves this (✓), while others construct trajectories (✗).

• Exact Evaluation checks if the reward function is directly applied in the image domain (x0); all methods except SPO ensure this.
• Extra Exploration refers to additional techniques beyond standard sampling; only DEPO incorporates this (✓).
• Shared State assesses whether the method preserves trajectory-level information instead of breaking it into independent step pairs;
only DEPO fully maintains shared state, while SPO does so partially.

• High-Frequency Reward determines whether the method applies frequent reward feedback; both Diffusion-DPO and DEPO optimize
with high-frequency signals, whereas others do not.

Overall, DEPO stands out as the most comprehensive approach, integrating extra exploration, shared state preservation, and high-frequency
reward, while maintaining exact evaluation despite discretization.

B Further Explanation about Figure 6
Here, we provide additional insights into the optimization process. Focusing on the terms containing 𝜃 , and considering the formulation
inside the log in Equation (14), we observe that the optimization direction aims to maximize 𝑝+

𝑝− .
As illustrated in Figure 6, all the depicted directions are possible. However, in the unfavorable case indicated by the red arrow, 𝑝+ is

dragged down by 𝑝− . To mitigate the tendency of the resultsmoving toward the origin, we detach the corresponding 𝑝 , as also shown in
Figure 6.

C Langevin MCMC Details
Langevin MCMC algorithm follows the following formulation:

x𝑖+1
𝑡 = x𝑖𝑡 + 𝜏 · s𝜃 (x𝑖𝑡 , 𝑡) +

√
2𝜏 · z, (13)

where 𝜏 = 0.02, z ∼ N(0, I), and we iterate it for 3 times for all divert timesteps at first 40% and in this way we can get best performance.
Following such Langevin MCMC at 𝑡 will change x𝑖𝑡 but x𝑖𝑡 still in the distribution at 𝑡 .

D Proofs
D.1 Proof of Proposition 5.4
We provide the following proof of Proposition 5.4.

Proposition D.1. We can directly obtain the expected log probability within the log𝜎 by

Ex±𝑡𝜏 −𝑛−1∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏 −𝑛−1 |x±𝑡𝜏 −𝑛 ) log
𝑝m
𝜃

(
x+𝑡𝜏−𝑛−1 | x𝑡𝜏

)
𝑝m
𝜃

(
x−𝑡𝜏−𝑛−1 | x𝑡𝜏

) = log
𝑝m
𝜃
(𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1

(
x+𝑡𝜏−𝑛) | x𝑡𝜏

)
𝑝m
𝜃
(𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1

(
x−𝑡𝜏−𝑛) | x𝑡𝜏

) . (14)

Proof. We want to show that

Ex±𝑡𝜏 −𝑛−1∼𝑝𝑠𝑔 [𝜃 ] (x𝑡𝜏 −𝑛−1 |x±𝑡𝜏 −𝑛 ) log
𝑝m
𝜃

(
x+𝑡𝜏−𝑛−1 | x𝑡𝜏

)
𝑝m
𝜃

(
x−𝑡𝜏−𝑛−1 | x𝑡𝜏

) = log
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x+𝑡𝜏−𝑛) | x𝑡𝜏

)
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x−𝑡𝜏−𝑛) | x𝑡𝜏

) .
By hypothesis,

x±𝑡𝜏−𝑛−1 ∼ N
(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x±𝑡𝜏−𝑛), 𝜎2

𝑡𝜏−𝑛−1 I
)
.

Hence we can write
x±𝑡𝜏−𝑛−1 = 𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1

(
x±𝑡𝜏−𝑛

) + 𝜎𝑡𝜏−𝑛−1 z±, z± ∼ N(0, I),
which leads to

Ex±𝑡𝜏 −𝑛−1 ∼𝑝𝑠𝑔 [𝜃 ] log
𝑝m
𝜃
(x+𝑡𝜏−𝑛−1 | x𝑡𝜏 )

𝑝m
𝜃
(x−𝑡𝜏−𝑛−1 | x𝑡𝜏 )

= Ez+,z− ∼ N(0,I) log
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x+𝑡𝜏−𝑛) + 𝜎𝑡𝜏−𝑛−1 z+

��� x𝑡𝜏 )
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x−𝑡𝜏−𝑛) + 𝜎𝑡𝜏−𝑛−1 z−

��� x𝑡𝜏 ) .
Assume that 𝑝m

𝜃

(
x𝑡𝜏−𝑛−1 | x𝑡𝜏

)
is Gaussian with mean 𝜇 (x𝑡𝜏 ) and covariance Σ̄, i.e.,

𝑝m𝜃
(
x𝑡𝜏−𝑛−1 | x𝑡𝜏

)
= N

(
x𝑡𝜏−𝑛−1; 𝜇 (x𝑡𝜏 ), Σ̄

)
.
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Then, up to a constant in x𝑡𝜏−𝑛−1,

log 𝑝m𝜃
(
x𝑡𝜏−𝑛−1

�� x𝑡𝜏 ) = − 1
2
(
x𝑡𝜏−𝑛−1 − 𝜇

)⊤ Σ̄−1 (
x𝑡𝜏−𝑛−1 − 𝜇

) + const(x𝑡𝜏 ) .

Let us define
𝜇+ := 𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1

(
x+𝑡𝜏−𝑛

)
, 𝜇− := 𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1

(
x−𝑡𝜏−𝑛

)
, 𝜎 := 𝜎𝑡𝜏−𝑛−1 .

Then x±𝑡𝜏−𝑛−1 = 𝜇± + 𝜎 z±, and

log 𝑝m𝜃
(
x±𝑡𝜏−𝑛−1 | x𝑡𝜏

)
= − 1

2
((𝜇± + 𝜎 z±) − 𝜇

)⊤Σ̄−1 ((𝜇± + 𝜎 z±) − 𝜇
) + 𝐶,

where 𝐶 is a constant that does not depend on z±. Denote Δ± := 𝜇± − 𝜇. Then

(𝜇± + 𝜎 z± − 𝜇) = Δ± + 𝜎 z±,

which expands as (
Δ± + 𝜎 z±

)⊤Σ̄−1 (Δ± + 𝜎 z±
)
= (Δ±)⊤Σ̄−1Δ± + 2 (Δ±)⊤Σ̄−1 𝜎 z± + 𝜎2 (z±)⊤Σ̄−1z± .

Taking the expectation over z± ∼ N(0, I), we have E[z±] = 0 and E[z±z±⊤] = I. Thus,

Ez±
[
(Δ± + 𝜎 z±)⊤Σ̄−1 (Δ± + 𝜎 z±)

]
= (Δ±)⊤Σ̄−1 Δ± + 𝜎2 Tr

(
Σ̄−1) .

Consequently,
Ez±

[
log 𝑝m𝜃

(
𝜇± + 𝜎 z± | x𝑡𝜏

) ]
= − 1

2 (Δ±)⊤Σ̄−1 Δ± − 1
2 𝜎

2 Tr
(
Σ̄−1) + 𝐶.

(Notice the second term above is just a constant in 𝜇±, so what really matters is the (Δ±)⊤Σ̄−1Δ± part, which depends on 𝜇±.)
Now we take the difference for “+” versus “−”:

Ez+
[
log𝑝m𝜃

(
𝜇+ + 𝜎 z+ | x𝑡𝜏

) ] − Ez−
[
log𝑝m𝜃

(
𝜇− + 𝜎 z− | x𝑡𝜏

) ]
= − 1

2 (Δ+)⊤Σ̄−1 Δ+ − 1
2 𝜎

2 Tr(Σ̄−1) + 𝐶 −
[
− 1

2 (Δ−)⊤Σ̄−1 Δ− − 1
2 𝜎

2 Tr(Σ̄−1) + 𝐶
]

= − 1
2 (Δ+)⊤Σ̄−1 Δ+ + 1

2 (Δ−)⊤Σ̄−1 Δ− = log
𝑝m
𝜃

(
𝜇+ | x𝑡𝜏

)
𝑝m
𝜃

(
𝜇− | x𝑡𝜏

) ,
where the last equality follows from the fact that

log 𝑝m𝜃 (y | x𝑡𝜏 ) = − 1
2 (y − 𝜇)⊤Σ̄−1 (y − 𝜇) + const in y.

Hence

log
𝑝m
𝜃
(𝜇+ | x𝑡𝜏 )

𝑝m
𝜃
(𝜇− | x𝑡𝜏 )

= − 1
2 (𝜇+ − 𝜇)⊤Σ̄−1 (𝜇+ − 𝜇) + 1

2 (𝜇− − 𝜇)⊤Σ̄−1 (𝜇− − 𝜇),

which exactly matches
Ez+,z−

[
log 𝑝m𝜃 (𝜇+ + 𝜎 z+ | x𝑡𝜏 ) − log𝑝m𝜃 (𝜇− + 𝜎 z− | x𝑡𝜏 )

]
.

Therefore, returning to the notation 𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x±𝑡𝜏−𝑛) for 𝜇±, we have shown that

Ex±𝑡𝜏 −𝑛−1
log

𝑝m
𝜃
(x+𝑡𝜏−𝑛−1 | x𝑡𝜏 )

𝑝m
𝜃
(x−𝑡𝜏−𝑛−1 | x𝑡𝜏 )

= log
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x+𝑡𝜏−𝑛) | x𝑡𝜏

)
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x−𝑡𝜏−𝑛) | x𝑡𝜏

) ,
□

With the claim above, we have:

LDEPO = −E𝜏∼D log𝜎
©­­«
𝛽 log

𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x+𝑡𝜏−𝑛) | x𝑡𝜏

)
𝑝ref

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x+𝑡𝜏−𝑛) | x𝑡𝜏

) − 𝛽 log
𝑝m
𝜃

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x−𝑡𝜏−𝑛) | x𝑡𝜏

)
𝑝ref

(
𝜇𝑠𝑔[𝜃 ],𝑡𝜏−𝑛−1 (x−𝑡𝜏−𝑛) | x𝑡𝜏

) ª®®
¬
, (15)

where the 𝑝m (· | ·) and 𝑝ref (· | ·) are the probability of x𝑡𝜏−𝑛−1 given x𝑡𝜏 .
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D.2 Proof of Proposition 5.2
Proposition D.2. According to DDIM [29],

E
[
x𝑡−1

�� x𝑡 ] = 𝛼 (𝑡) x̂0 (x𝑡 ) + 𝛽 (𝑡)x𝑡
where 𝛼 (𝑡) and 𝛽 (𝑡) are deterministic scalars that depend only on 𝑡 and can represent the evolution of x𝑡−1.

Proof. According to the Equation (12) in DDIM paper [29], we have:

x𝑡−1 =
√
𝛼𝑡−1

©­«
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖

(𝑡 )
𝜃

(x𝑡 )√
𝛼𝑡

ª®¬︸                          ︷︷                          ︸
" predicted x0”

+
√︃

1 − 𝛼𝑡−1 − 𝜎2
𝑡 · 𝜖 (𝑡 )

𝜃
(x𝑡 )︸                            ︷︷                            ︸

"direction pointing to x𝑡 ”

+ 𝜎𝑡𝜖𝑡︸︷︷︸
random noise

(16)

We define 𝛼 (𝑡) = √
𝛼𝑡−1, 𝛽 (𝑡) =

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 , then have

E
[
x𝑡−1

�� x𝑡 ] = 𝛼 (𝑡) x̂0 (x𝑡 ) + 𝛽 (𝑡)𝜖 (𝑡 )
𝜃

(x𝑡 )
□

D.3 Proof of Lemma 5.3
Lemma D.3 (Accurate Evaluation for Diffusion Models). The reward model applied to the diffusion model’s one-step prediction, x̂0, aligns
more closely with E

[
x𝑡−1

��x𝑡 ] than with samples from x𝑡−1 ∼ 𝑝𝜃 (x𝑡−1 |x𝑡 ), and more so than using x𝑡 alone.

Proof. According to the Equation (12) in DDIM paper [29], we have:

x𝑡 =
√
𝛼𝑡 x̂0 (x𝑡 ) +

√
1 − 𝛼𝑡𝜖

(𝑡 )
𝜃

(x𝑡 ) (17)

x𝑡−1 =
√
𝛼𝑡−1x̂0 (x𝑡 ) +

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 𝜖
(𝑡 )
𝜃

(x𝑡 ) + 𝜎𝑡𝜖𝑡 (18)

E
[
x𝑡−1

�� x𝑡 ] = √
𝛼𝑡−1x̂0 (x𝑡 ) +

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 𝜖
(𝑡 )
𝜃

(x𝑡 ) (19)

Apparently that E
[
x𝑡−1

�� x𝑡 ] is better than x𝑡−1 due to smaller variance, and x𝑡−1 is better than x𝑡 because 𝛼𝑡−1 > 𝛼𝑡 . □

E Sampling Process
The sampling process is shown in Algorithm 1. For brevity, we omit the case where there are insufficient timesteps for an 𝑛-length trajectory,
resulting in early termination, where we will directly use such a shorter trajectory. In this work, 𝑟𝑡𝑟𝑎 = 0.5, 𝑟𝑡𝑖𝑚𝑒 = 0.5.

Algorithm 1 Sampling Process
1: Require: Divert timesteps range 𝑡1 and 𝑡2
2: Require: Trajectory length 𝑛
3: Require: Filter Rate over Trajectories 𝑟𝑡𝑟𝑎
4: Require: Filter Rate over Different Timesteps 𝑟𝑡𝑖𝑚𝑒

5: Require: Control condition c
6: Require: Reward Model 𝑠 (·)
7: Sample 𝑡𝑠 ∈ [𝑡1, 𝑡2], 𝑙𝑡𝑟𝑎 = []
8: Following DDPM, get x𝑡𝑠
9: repeat
10: Following DDPM and Langevin MCMC, get 2

𝑟𝑡𝑟𝑎
samples of x𝑡𝑠−1

11: Following DDPM 𝑛 timesteps, get 2
𝑟𝑡𝑟𝑎

trajectories
12: Random select x𝑠𝑡−𝑛 from the trajectories
13: Predict x0 for each trajectories, calculate 𝑠 (𝑥0) and then select the best one and worst one as 𝜏+, 𝜏−
14: Append {𝜏+, 𝜏−} to 𝑙𝑡𝑟𝑎
15: 𝑡𝑠 = 𝑡𝑠 − 𝑛
16: until 𝑡𝑠 <= 0
17: Sort 𝑙𝑡𝑟𝑎 based on the descending order of |𝑠 (𝑥+0 ) − 𝑠 (𝑥−0 ) | and then filter them with ratio 𝑟𝑡𝑖𝑚𝑒 .
18: Return 𝑙𝑡𝑟𝑎
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Algorithm 2 Training Algorithm
1: Require: Collected data 𝑙𝑡𝑟𝑎
2: Require:Model parameters on training 𝜃
3: Require:Model parameters for reference model 𝜃𝑟𝑒 𝑓
4: repeat
5: Pop 𝜏 ∈ 𝑙𝑡𝑟𝑎
6: Calculate Equation (15) as L𝑑𝑒𝑝𝑜
7: Calculate Equation (9) as L𝑎𝑑𝑣
8: Calculate Equation (7) as L𝑟𝑒𝑔

9: L = LDEPO + 𝑐𝑟𝑒𝑔L𝑟𝑒𝑔 + 𝑐𝑎𝑑𝑣L𝑎𝑑𝑣
10: Optimize 𝜃 with L
11: until 𝑙𝑡𝑟𝑎 is empty

Figure 10: Visualization of mode collapse.

F Training Algorithm
The sampling process is shown in Algorithm 2. For brevity, the optimization process of the Discriminator is omitted.

G More Implementation Details
As shown in Section 7, we use CLIP as the backbone of our reward model, and train the vision and text encoder on the Pairwise User
Preference Dataset. To build the discriminator, we use the frozen UNet of the diffusion model as the backbone, followed by several trainable
convolutional and pooling layers. The product mask is produced by a private segmentation model, which cat segment the foreground product
from the product image provided by the user. We use a slightly fine-tuned SDXL as the base model, with specific design choices tailored to
this setting.

H Mode Collapse
In Figure 10, we demonstrate the impact of mode collapse on the background generation. The first column presents normal background
generation, serving as a baseline for comparison. The subsequent four columns exhibit various mode collapses. The second column features
backgrounds marred by significant noise. The third column displays images with solid blue backgrounds. In the fourth column, the images
have backgrounds with diagonal lines extending from the bottom right corner to the top left corner. The fifth column includes images with
backgrounds filled with numerous elements. Our method can effectively alleviate mode collapse.
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Table 4: Evaluation metrics for collapsed and non-collapsed patterns. Lower scores indicate degraded quality under mode
collapse. Figure references denote corresponding visual examples in Figure 10.

Pattern Type EPS↑ PickScore↑ CLIP Score↑
Blurred & Chaotic (2nd column) 14.50 20.09 23.01
Solid Color (3rd column) 13.61 19.92 21.49
Stripped (4th column) 16.39 20.78 25.76
Dotted (5th column) 15.81 20.85 26.66
Not Collapsed (DEPO) 17.86 21.24 27.64

	The	image	is
softly	lit	with	a
warm,	glowing
ambiance,

suggesting	a	serene
and	inviting
atmosphere.

a	section	of	a
living	room.	

a	framed	display
standing	on	a	light-
colored	wooden
surface,	such	as	a
table	or	shelf.

two	cylindrical
objects	placed	on	a
natural	background
of	dried	leaves	and

twigs.

A	set	of	wooden
drawers	is

positioned	against
a	white	wall.

The	product	is
situated	on	a	round
wooden	coaster,
which	is	placed	on
a	striped	yellow
and	white	cloth.

a	gray	and	yellow
bathroom	floor	mat
placed	on	a	gray
tiled	floor.

a	setting	with	a
mug	and	a
wrapped	item
placed	on	a
tabletop.

a	well-lit	indoor
setting.

a	rectangular
object	with	an
attached	tassel
featuring	intricate
knotwork	and
beads.

The	product	is
placed	on	top	of	an
open	book,	with
part	of	a	grayscale
image	of	hands
and	an	arm	visible
on	the	pages.

a	set	of
cylindrical-

shaped,	vertically
ribbed	containers
in	various	pastel
colors	including
white,	pink,	blue,

and	gray.

The	scene	features
a	pair	of	tall

wooden	side	tables
situated	against	a
light-colored	wall.

The	product
features	a	textured
wall	with	a

combination	of	a
vertical	wood	slat
pattern	on	the	left
and	a	tiled	pattern
on	the	right.

Figure 11: The prompts of images in Figure 1.

I Additional Visualizations
In Figure 12, we presented the additional images generated by our method. Each example consists of three rows: the first row contains the
foreground images, the second row features the images generated by the base model, and the third row displays the images generated by our
DEPO.
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Figure 12: Visualization of foreground images, images generated by baseline, and images generated by our DEPO.
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